Geometric ergodicity of the Bayesian lasso

نویسندگان

  • Kshitij Khare
  • James P. Hobert
چکیده

Consider the standard linear model y = X + ✏, where the components of ✏ are iid standard normal errors. Park and Casella [14] consider a Bayesian treatment of this model with a Laplace/Inverse-Gamma prior on ( , ). They introduce a Data Augmentation approach that can be used to explore the resulting intractable posterior density, and call it the Bayesian lasso algorithm. In this paper, the Markov chain underlying the Bayesian lasso algorithm is shown to be geometrically ergodic, for arbitrary values of the sample size n and the number of variables p. This is important, as geometric ergodicity provides theoretical justification for the use of Markov chain CLT, which can then be used to obtain asymptotic standard errors for Markov chain based estimates of posterior quantities. Kyung et al [12] provide a proof of geometric ergodicity for the restricted case n p, but as we explain in this paper, their proof is incorrect. Our approach is different and more direct, and enables us to establish geometric ergodicity for arbitrary n and p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Regression, Standard Errors, and Bayesian Lassos

Penalized regression methods for simultaneous variable selection and coefficient estimation, especially those based on the lasso of Tibshirani (1996), have received a great deal of attention in recent years, mostly through frequentist models. Properties such as consistency have been studied, and are achieved by different lasso variations. Here we look at a fully Bayesian formulation of the prob...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models

We consider two Bayesian hierarchical one-way random effects models and establish geometric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity, along with a moment condition, guarantees a central limit theorem for sample means and quantiles. In addition, it ensures the consistency of various methods for estimating the variance in the asymptotic normal distribution....

متن کامل

Variable Transformation to Obtain Geometric Ergodicity in the Random-walk Metropolis Algorithm

A random-walk Metropolis sampler is geometrically ergodic if its equilibrium density is super-exponentially light and satisfies a curvature condition (Jarner and Hansen, 2000). Many applications, including Bayesian analysis with conjugate priors of logistic and Poisson regression and of log-linear models for categorical data result in posterior distributions that are not super-exponentially lig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013